E-commerce, Artificial Intelligence, Bibliometric Analysis, R Software, Biblioshiny, Scopus and Web of Science


Purpose: The aim of this study is to conduct a comprehensive review of scientific articles concerning artificial intelligence (AI) applications in electronic commerce through bibliometric analysis.


Theoretical Framework: The current study utilized both the SCOPUS and Web of Science (WoS) databases to enrich the analysis with a wider selection of papers in the field, incorporating an examination of the most cited documents.


Design/Methodology/Approach: The dataset for analysis was selected according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) framework, integrating data from Scopus and WoS through R software, specifically using the biblioshiny library. It includes 8372 papers published from 1995 to 2023. This study's data analysis used two approaches: descriptive analysis to examine the data quantitatively and scientific mapping to explore the intellectual and social structures within the dataset.


Findings: The results reveal significant trends in the application of artificial intelligence in e-commerce, highlighting the rapid growth of interest in this area over the last decade. China emerges as the country with the highest number of citations, with ZHANG Y identified as the most relevant author and HU M as the most cited author. Furthermore, the study identifies prevalent keywords used by the authors, including sentiment analysis and recommendation systems.


Research, Practical & Social Implications: This study underscores the transformative potential of AI in enhancing e-commerce practices, offering insights for both academic researchers and industry professionals by providing valuable perspectives on current trends and contributions.


Originality/Value: The value of the study lies in its comprehensive bibliometric approach, which integrates two major databases to explore AI's applications in e-commerce. This deviation from previous reviews, which often rely on a single database, provides a deeper understanding of the current landscape and future directions in this field.


Download data is not yet available.


Altarturi, H. H. M., Nor, A. R. M., Jaafar, N. I. & Anuar, N. B. (2023). A Bibliometric and Content Analysis of Technological Advancement Applications in Agricultural E-Commerce. Electronic Commerce Research. doi:10.1007/s10660-023-09670-z.

Arfiansyah, F., Satiadharma, M., Siswanto, B. N. & Rizaldi, F. M. (2023). ‘Bibliometric Analysis of Customers’ Purchase Intention in e-Commerce’. Income Journal, 2(1), 1–10. doi:10.61911/income.v2i1.26.

Aria, M. & Cuccurullo, C. (2017). Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. Journal of informetrics, 11(4), 959–75.

Bawack, R. E., Wamba, S. F., Carillo, K. D. A. & Akter, S. (2022). Artificial Intelligence in E-Commerce: A Bibliometric Study and Literature Review. Electronic Markets, 32(1), 297–338. doi:10.1007/s12525-022-00537-z.

Blei, David M., Ng, A. Y. & Jordan, M. I. (2003). J. Mach. Learn. Res. J. Mach. Learn. Res 3, p. 993–1022.

Chen, T. & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco California USA: ACM, 785–94. doi:10.1145/2939672.2939785.

Chițimiea, A. et al. (2021). The Drivers of Green Investment: A Bibliometric and Systematic Review. Sustainability, 13(6), p. 3507. doi:10.3390/su13063507.

Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), p. 319. doi:10.2307/249008.

Echchakoui, S. (2020). Why and How to Merge Scopus and Web of Science during Bibliometric Analysis: The Case of Sales Force Literature from 1912 to 2019. Journal of Marketing Analytics, 8(3), p. 165–84. doi:10.1057/s41270-020-00081-9.

Fernández, M. I. E., Barbosa, P. L. & Guerrero, A. P. (2010). Web of Science vs. SCOPUS: Un Estudio Cuantitativo En Ingeniería Química. In Anales de Documentación, Facultad de Comunicación y Documentación y Servicio de Publicaciones de la …, 159–75.

Fornell, C. & Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1), p. 39. doi:10.2307/3151312.

Frioui, S. & Graa, A. (2024). Bibliometric Analysis of Artificial Intelligence in the Scope of E-Commerce: Trends and Progress over the Last Decade. MANAGEMENT AND ECONOMICS REVIEW, 9(1), p. 5–24. doi:10.24818/mer/2024.01-01.

Gecit, B. B. (2021). Electronic Commerce During the Covid-19 Pandemics: A Bibliometric Analysis Approach. International Journal of Academic Research in Business and Social Sciences, 11(11), p. Pages 2434-2444. doi:10.6007/IJARBSS/v11-i11/11421.

Graves, A. (2012). 385 Supervised Sequence Labelling with Recurrent Neural Networks. Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-642-24797-2.

Hair, J. F. (2009). Multivariate Data Analysis.

He, X. et al. (2017). Neural Collaborative Filtering. In Proceedings of the 26th International Conference on World Wide Web, Perth Australia: International World Wide Web Conferences Steering Committee, 173–82. doi:10.1145/3038912.3052569.

Henseler, J., Ringle, C. M. & Sarstedt M. (2015). A New Criterion for Assessing Discriminant Validity in Variance-Based Structural Equation Modeling. Journal of the Academy of Marketing Science, 43(1), p. 115–35. doi:10.1007/s11747-014-0403-8.

Holsapple, C. W. & Singh, M. (2000). Electronic Commerce: From a Definitional Taxonomy Toward a Knowledge-Management View. Journal of Organizational Computing and Electronic Commerce, 10(3), p. 149–70. doi:10.1207/S15327744JOCE1003_01.

Kingma, D. P. & Ba, J. (2014). Adam: A Method for Stochastic Optimization. doi:10.48550/ARXIV.1412.6980.

Koren, Y., Bell, R. & Volinsky, C. (2009). Matrix Factorization Techniques for Recommender Systems. Computer, 42(8), p. 30–37. doi:10.1109/MC.2009.263.

Kumar, S., Lim, W. M., Pandey, N. & Westland, J. C. (2021). 20 Years of Electronic Commerce Research. Electronic Commerce Research, 21(1), p. 1–40. doi:10.1007/s10660-021-09464-1.

Leskovec, J., Adamic, L. A. & Huberman, B. A. (2007). The Dynamics of Viral Marketing. ACM Transactions on the Web, 1(1), p. 5. doi:10.1145/1232722.1232727.

Marjerison, R. K., Zhang, Y. & Zheng, H. (2022). AI in E-Commerce: Application of the Use and Gratification Model to The Acceptance of Chatbots. Sustainability, 14(21), p. 14270. doi:10.3390/su142114270.

Mikolov, T., Chen, K., Corrado, G. & Dean, J. (2013). Proceedings of the 1st International Conference on Learning Representations (ICLR 2013).

Moher, D. (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Annals of Internal Medicine, 151(4), p. 264. doi:10.7326/0003-4819-151-4-200908180-00135.

Mongeon, P. & Paul-Hus, A. (2016). The Journal Coverage of Web of Science and Scopus: A Comparative Analysis. Scientometrics, 106(1), p. 213–28. doi:10.1007/s11192-015-1765-5.

Osareh, F. (1996). Bibliometrics, Citation Analysis and Co-Citation Analysis: A Review of Literature I. Libri, 46(3). doi:10.1515/libr.1996.46.3.149.

Pallathadka, H. et al. (2023). Applications of Artificial Intelligence in Business Management, e-Commerce and Finance. Materials Today: Proceedings 80, p. 2610–13. doi:10.1016/j.matpr.2021.06.419.

Pang, B., Lee, L. & Vaithyanathan, S. (2002). Thumbs up?: Sentiment Classification Using Machine Learning Techniques. In Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing - EMNLP 02, Not Known: Association for Computational Linguistics, 79–86. doi:10.3115/1118693.1118704.

Pedregosa, F. et al. (2011). Scikit-Learn: Machine Learning in Python. the Journal of machine Learning research 12, p. 2825–30.

Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y. & Podsakoff, N. P. (2003). Common Method Biases in Behavioral Research: A Critical Review of the Literature and Recommended Remedies. Journal of Applied Psychology, 88(5), p. 879–903. doi:10.1037/0021-9010.88.5.879.

Poláček, L., Ulman, M., Cihelka, P. & Šilerová, E. (2024). Dynamic Pricing in E-Commerce: Bibliometric Analysis. Acta Informatica Pragensia. doi:10.18267/j.aip.227.

Purnomo, Y. J. (2023). Digital Marketing Strategy to Increase Sales Conversion on E-Commerce Platforms. Journal of Contemporary Administration and Management (ADMAN), 1(2), p. 54–62. doi:10.61100/adman.v1i2.23.

Qiu, L. & Benbasat, I. (2009). Evaluating Anthropomorphic Product Recommendation Agents: A Social Relationship Perspective to Designing Information Systems. Journal of Management Information Systems, 25(4), p. 145–82. doi:10.2753/MIS0742-1222250405.

Ribeiro, H., Barbosa, B., Moreira, A. C. & Rodrigues, R. (2022). Churn in Services–A Bibliometric Review.

Rita, P. & Ramos, R. F. (2022). Global Research Trends in Consumer Behavior and Sustainability in E-Commerce: A Bibliometric Analysis of the Knowledge Structure. Sustainability, 14(15), p. 9455. doi:10.3390/su14159455.


Sarwar, B., Karypis, G., Konstan, J. & Riedl, J. (2001). Item-Based Collaborative Filtering Recommendation Algorithms. In Proceedings of the 10th International Conference on World Wide Web, Hong Kong Hong Kong: ACM, 285–95. doi:10.1145/371920.372071.

Sudirjo, F. (2023). Marketing Strategy in Improving Product Competitiveness in the Global Market. Journal of Contemporary Administration and Management (ADMAN), 1(2), p. 63–69. doi:10.61100/adman.v1i2.24.

Tang, Y. M., Chau, K. Y., Lau, Y.-Y. & Zheng, Z. (2023). Data-Intensive Inventory Forecasting with Artificial Intelligence Models for Cross-Border E-Commerce Service Automation. Applied Sciences, 13(5), p. 3051. doi:10.3390/app13053051.

Tran, D. T. & Huh, J.-H. (2023). New Machine Learning Model Based on the Time Factor for E-Commerce Recommendation Systems. The Journal of Supercomputing, 79(6), p. 6756–6801.

Visser, M., Eck, N. J. V. & Waltman, L. (2021). Large-Scale Comparison of Bibliographic Data Sources: Scopus, Web of Science, Dimensions, Crossref, and Microsoft Academic. Quantitative Science Studies, 2(1), p. 20–41. doi:10.1162/qss_a_00112.

Wei, J. et al. (2017). Collaborative Filtering and Deep Learning Based Recommendation System for Cold Start Items. Expert Systems with Applications 69, p. 29–39. doi:10.1016/j.eswa.2016.09.040.

Wulfert, T. & Karger, E. (2022). A Bibliometric Analysis of Platform Research in E-Commerce: Past, Present, and Future Research Agenda. Corporate Ownership and Control, 20(1), p. 185–200. doi:10.22495/cocv20i1art17.

Xu, C. et al. (2019). Graph Contextualized Self-Attention Network for Session-Based Recommendation. In IJCAI, , 3940–46.

Yu, B. & Singh, M. P. (2002). An Evidential Model of Distributed Reputation Management. In Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems Part 1 - AAMAS 02, Bologna, Italy: ACM Press, 294. doi:10.1145/544741.544809.

Zeng, D., & Sycara, K. (1998). Bayesian Learning in Negotiation. International Journal of Human-Computer Studies, 48(1), p. 125–41. doi:10.1006/ijhc.1997.0164.

Zhang, D., Xu, H., Su, Z. & Xu, Y. (2015). Chinese Comments Sentiment Classification Based on Word2vec and SVMperf. Expert Systems with Applications, 42(4): 1857–63. doi:10.1016/j.eswa.2014.09.011.

Zhou, G. et al. (2018). Deep Interest Network for Click-Through Rate Prediction. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London United Kingdom: ACM, 1059–68. doi:10.1145/3219819.3219823.

Zupic, I. & Čater, T. (2015). Bibliometric Methods in Management and Organization. Organizational Research Methods, 18(3), p. 429–72. doi:10.1177/1094428114562629.




How to Cite

Boukrouh, I., & Azmani, A. (2024). ARTIFICIAL INTELLIGENCE APPLICATIONS IN E-COMMERCE: A BIBLIOMETRIC STUDY FROM 1995 TO 2023 USING MERGED DATA SOURCES. International Journal of Professional Business Review, 9(4), e4537.