ARTIFICIAL INTELLIGENCE APPLICATIONS IN E-COMMERCE: A BIBLIOMETRIC STUDY FROM 1995 TO 2023 USING MERGED DATA SOURCES

Authors

DOI:

https://doi.org/10.26668/businessreview/2024.v9i4.4537

Keywords:

E-commerce, Artificial Intelligence, Bibliometric Analysis, R Software, Biblioshiny, Scopus and Web of Science

Abstract

Purpose: The aim of this study is to conduct a comprehensive review of scientific articles concerning artificial intelligence (AI) applications in electronic commerce through bibliometric analysis.

 

Theoretical Framework: The current study utilized both the SCOPUS and Web of Science (WoS) databases to enrich the analysis with a wider selection of papers in the field, incorporating an examination of the most cited documents.

 

Design/Methodology/Approach: The dataset for analysis was selected according to the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) framework, integrating data from Scopus and WoS through R software, specifically using the biblioshiny library. It includes 8372 papers published from 1995 to 2023. This study's data analysis used two approaches: descriptive analysis to examine the data quantitatively and scientific mapping to explore the intellectual and social structures within the dataset.

 

Findings: The results reveal significant trends in the application of artificial intelligence in e-commerce, highlighting the rapid growth of interest in this area over the last decade. China emerges as the country with the highest number of citations, with ZHANG Y identified as the most relevant author and HU M as the most cited author. Furthermore, the study identifies prevalent keywords used by the authors, including sentiment analysis and recommendation systems.

 

Research, Practical & Social Implications: This study underscores the transformative potential of AI in enhancing e-commerce practices, offering insights for both academic researchers and industry professionals by providing valuable perspectives on current trends and contributions.

 

Originality/Value: The value of the study lies in its comprehensive bibliometric approach, which integrates two major databases to explore AI's applications in e-commerce. This deviation from previous reviews, which often rely on a single database, provides a deeper understanding of the current landscape and future directions in this field.

Downloads

Download data is not yet available.

References

Altarturi, H. H. M., Nor, A. R. M., Jaafar, N. I. & Anuar, N. B. (2023). A Bibliometric and Content Analysis of Technological Advancement Applications in Agricultural E-Commerce. Electronic Commerce Research. doi:10.1007/s10660-023-09670-z.

Arfiansyah, F., Satiadharma, M., Siswanto, B. N. & Rizaldi, F. M. (2023). ‘Bibliometric Analysis of Customers’ Purchase Intention in e-Commerce’. Income Journal, 2(1), 1–10. doi:10.61911/income.v2i1.26.

Aria, M. & Cuccurullo, C. (2017). Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. Journal of informetrics, 11(4), 959–75.

Bawack, R. E., Wamba, S. F., Carillo, K. D. A. & Akter, S. (2022). Artificial Intelligence in E-Commerce: A Bibliometric Study and Literature Review. Electronic Markets, 32(1), 297–338. doi:10.1007/s12525-022-00537-z.

Blei, David M., Ng, A. Y. & Jordan, M. I. (2003). J. Mach. Learn. Res. J. Mach. Learn. Res 3, p. 993–1022.

Chen, T. & Guestrin, C. (2016). XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco California USA: ACM, 785–94. doi:10.1145/2939672.2939785.

Chițimiea, A. et al. (2021). The Drivers of Green Investment: A Bibliometric and Systematic Review. Sustainability, 13(6), p. 3507. doi:10.3390/su13063507.

Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), p. 319. doi:10.2307/249008.

Echchakoui, S. (2020). Why and How to Merge Scopus and Web of Science during Bibliometric Analysis: The Case of Sales Force Literature from 1912 to 2019. Journal of Marketing Analytics, 8(3), p. 165–84. doi:10.1057/s41270-020-00081-9.

Fernández, M. I. E., Barbosa, P. L. & Guerrero, A. P. (2010). Web of Science vs. SCOPUS: Un Estudio Cuantitativo En Ingeniería Química. In Anales de Documentación, Facultad de Comunicación y Documentación y Servicio de Publicaciones de la …, 159–75.

Fornell, C. & Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1), p. 39. doi:10.2307/3151312.

Frioui, S. & Graa, A. (2024). Bibliometric Analysis of Artificial Intelligence in the Scope of E-Commerce: Trends and Progress over the Last Decade. MANAGEMENT AND ECONOMICS REVIEW, 9(1), p. 5–24. doi:10.24818/mer/2024.01-01.

Gecit, B. B. (2021). Electronic Commerce During the Covid-19 Pandemics: A Bibliometric Analysis Approach. International Journal of Academic Research in Business and Social Sciences, 11(11), p. Pages 2434-2444. doi:10.6007/IJARBSS/v11-i11/11421.

Graves, A. (2012). 385 Supervised Sequence Labelling with Recurrent Neural Networks. Berlin, Heidelberg: Springer Berlin Heidelberg. doi:10.1007/978-3-642-24797-2.

Hair, J. F. (2009). Multivariate Data Analysis.

He, X. et al. (2017). Neural Collaborative Filtering. In Proceedings of the 26th International Conference on World Wide Web, Perth Australia: International World Wide Web Conferences Steering Committee, 173–82. doi:10.1145/3038912.3052569.

Henseler, J., Ringle, C. M. & Sarstedt M. (2015). A New Criterion for Assessing Discriminant Validity in Variance-Based Structural Equation Modeling. Journal of the Academy of Marketing Science, 43(1), p. 115–35. doi:10.1007/s11747-014-0403-8.

Holsapple, C. W. & Singh, M. (2000). Electronic Commerce: From a Definitional Taxonomy Toward a Knowledge-Management View. Journal of Organizational Computing and Electronic Commerce, 10(3), p. 149–70. doi:10.1207/S15327744JOCE1003_01.

Kingma, D. P. & Ba, J. (2014). Adam: A Method for Stochastic Optimization. doi:10.48550/ARXIV.1412.6980.

Koren, Y., Bell, R. & Volinsky, C. (2009). Matrix Factorization Techniques for Recommender Systems. Computer, 42(8), p. 30–37. doi:10.1109/MC.2009.263.

Kumar, S., Lim, W. M., Pandey, N. & Westland, J. C. (2021). 20 Years of Electronic Commerce Research. Electronic Commerce Research, 21(1), p. 1–40. doi:10.1007/s10660-021-09464-1.

Leskovec, J., Adamic, L. A. & Huberman, B. A. (2007). The Dynamics of Viral Marketing. ACM Transactions on the Web, 1(1), p. 5. doi:10.1145/1232722.1232727.

Marjerison, R. K., Zhang, Y. & Zheng, H. (2022). AI in E-Commerce: Application of the Use and Gratification Model to The Acceptance of Chatbots. Sustainability, 14(21), p. 14270. doi:10.3390/su142114270.

Mikolov, T., Chen, K., Corrado, G. & Dean, J. (2013). Proceedings of the 1st International Conference on Learning Representations (ICLR 2013).

Moher, D. (2009). Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement. Annals of Internal Medicine, 151(4), p. 264. doi:10.7326/0003-4819-151-4-200908180-00135.

Mongeon, P. & Paul-Hus, A. (2016). The Journal Coverage of Web of Science and Scopus: A Comparative Analysis. Scientometrics, 106(1), p. 213–28. doi:10.1007/s11192-015-1765-5.

Osareh, F. (1996). Bibliometrics, Citation Analysis and Co-Citation Analysis: A Review of Literature I. Libri, 46(3). doi:10.1515/libr.1996.46.3.149.

Pallathadka, H. et al. (2023). Applications of Artificial Intelligence in Business Management, e-Commerce and Finance. Materials Today: Proceedings 80, p. 2610–13. doi:10.1016/j.matpr.2021.06.419.

Pang, B., Lee, L. & Vaithyanathan, S. (2002). Thumbs up?: Sentiment Classification Using Machine Learning Techniques. In Proceedings of the ACL-02 Conference on Empirical Methods in Natural Language Processing - EMNLP 02, Not Known: Association for Computational Linguistics, 79–86. doi:10.3115/1118693.1118704.

Pedregosa, F. et al. (2011). Scikit-Learn: Machine Learning in Python. the Journal of machine Learning research 12, p. 2825–30.

Podsakoff, P. M., MacKenzie, S. B., Lee, J.-Y. & Podsakoff, N. P. (2003). Common Method Biases in Behavioral Research: A Critical Review of the Literature and Recommended Remedies. Journal of Applied Psychology, 88(5), p. 879–903. doi:10.1037/0021-9010.88.5.879.

Poláček, L., Ulman, M., Cihelka, P. & Šilerová, E. (2024). Dynamic Pricing in E-Commerce: Bibliometric Analysis. Acta Informatica Pragensia. doi:10.18267/j.aip.227.

Purnomo, Y. J. (2023). Digital Marketing Strategy to Increase Sales Conversion on E-Commerce Platforms. Journal of Contemporary Administration and Management (ADMAN), 1(2), p. 54–62. doi:10.61100/adman.v1i2.23.

Qiu, L. & Benbasat, I. (2009). Evaluating Anthropomorphic Product Recommendation Agents: A Social Relationship Perspective to Designing Information Systems. Journal of Management Information Systems, 25(4), p. 145–82. doi:10.2753/MIS0742-1222250405.

Ribeiro, H., Barbosa, B., Moreira, A. C. & Rodrigues, R. (2022). Churn in Services–A Bibliometric Review.

Rita, P. & Ramos, R. F. (2022). Global Research Trends in Consumer Behavior and Sustainability in E-Commerce: A Bibliometric Analysis of the Knowledge Structure. Sustainability, 14(15), p. 9455. doi:10.3390/su14159455.

Saibaba, s. (2023). CUSTOMER LOYALTY IN E-COMMERCE: A REVIEW AND BIBLIOMETRIC ANALYSIS. 16, p. 139–63.

Sarwar, B., Karypis, G., Konstan, J. & Riedl, J. (2001). Item-Based Collaborative Filtering Recommendation Algorithms. In Proceedings of the 10th International Conference on World Wide Web, Hong Kong Hong Kong: ACM, 285–95. doi:10.1145/371920.372071.

Sudirjo, F. (2023). Marketing Strategy in Improving Product Competitiveness in the Global Market. Journal of Contemporary Administration and Management (ADMAN), 1(2), p. 63–69. doi:10.61100/adman.v1i2.24.

Tang, Y. M., Chau, K. Y., Lau, Y.-Y. & Zheng, Z. (2023). Data-Intensive Inventory Forecasting with Artificial Intelligence Models for Cross-Border E-Commerce Service Automation. Applied Sciences, 13(5), p. 3051. doi:10.3390/app13053051.

Tran, D. T. & Huh, J.-H. (2023). New Machine Learning Model Based on the Time Factor for E-Commerce Recommendation Systems. The Journal of Supercomputing, 79(6), p. 6756–6801.

Visser, M., Eck, N. J. V. & Waltman, L. (2021). Large-Scale Comparison of Bibliographic Data Sources: Scopus, Web of Science, Dimensions, Crossref, and Microsoft Academic. Quantitative Science Studies, 2(1), p. 20–41. doi:10.1162/qss_a_00112.

Wei, J. et al. (2017). Collaborative Filtering and Deep Learning Based Recommendation System for Cold Start Items. Expert Systems with Applications 69, p. 29–39. doi:10.1016/j.eswa.2016.09.040.

Wulfert, T. & Karger, E. (2022). A Bibliometric Analysis of Platform Research in E-Commerce: Past, Present, and Future Research Agenda. Corporate Ownership and Control, 20(1), p. 185–200. doi:10.22495/cocv20i1art17.

Xu, C. et al. (2019). Graph Contextualized Self-Attention Network for Session-Based Recommendation. In IJCAI, , 3940–46.

Yu, B. & Singh, M. P. (2002). An Evidential Model of Distributed Reputation Management. In Proceedings of the First International Joint Conference on Autonomous Agents and Multiagent Systems Part 1 - AAMAS 02, Bologna, Italy: ACM Press, 294. doi:10.1145/544741.544809.

Zeng, D., & Sycara, K. (1998). Bayesian Learning in Negotiation. International Journal of Human-Computer Studies, 48(1), p. 125–41. doi:10.1006/ijhc.1997.0164.

Zhang, D., Xu, H., Su, Z. & Xu, Y. (2015). Chinese Comments Sentiment Classification Based on Word2vec and SVMperf. Expert Systems with Applications, 42(4): 1857–63. doi:10.1016/j.eswa.2014.09.011.

Zhou, G. et al. (2018). Deep Interest Network for Click-Through Rate Prediction. In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London United Kingdom: ACM, 1059–68. doi:10.1145/3219819.3219823.

Zupic, I. & Čater, T. (2015). Bibliometric Methods in Management and Organization. Organizational Research Methods, 18(3), p. 429–72. doi:10.1177/1094428114562629.

Downloads

Published

2024-04-04

How to Cite

Boukrouh, I., & Azmani, A. (2024). ARTIFICIAL INTELLIGENCE APPLICATIONS IN E-COMMERCE: A BIBLIOMETRIC STUDY FROM 1995 TO 2023 USING MERGED DATA SOURCES. International Journal of Professional Business Review, 9(4), e4537. https://doi.org/10.26668/businessreview/2024.v9i4.4537