Interest Rate, Ibovespa, Financial Market, Structural Break


Objective: Analyzing, by means of an AR model, the presence of structural breaks in the interest rate series and, as a result, to verify the effects and/or changes in the share price level of certain publicly traded companies broken down by economic sectors, from January 2015 to June 2022.

Theoretical Framework: Monetary policy has a substantial effect on investment intentions and, consequently, this is reflected in the business environment channeled through the Brazilian market indicator, the Ibovespa. A structural break is when the trends and patterns of association between observations in a time series change. This break usually reflects difficult times, such as the COVID-19 pandemic.

Method: Using an AR model and statistical tests, the presence of structural breaks in the Selic series was analyzed. The aim was to identify repercussions on the Brazilian stock market, for which the market value of 12 Ibovepa companies was used as a proxy.

Results and Discussion: There was a divergence between the share price and the interest rate when the structural breaks occurred.

Research Implications: Knowing these structural changes can improve forecasting capacity and reduce the risk of estimating erroneous results.

Originality/Value: This study contributes to the literature by analyzing the accuracy of forecasts, verifying the magnitude of any shortfall, which can be used to make decisions in the business environment.


Download data is not yet available.


Andrews, D. W. (1993). Tests for parameter instability and structural change with unknown change point. Econometrica: Journal of the Econometric Society, 61(4), 821-856.

Andrews, D. W., & Ploberger, W. (1994). Optimal tests when a nuisance parameter is present only under the alternative. Econometrica: Journal of the Econometric Society, 62(6), 1383-1414.

Assaf, A. A. Neto (2018). Mercado Financeiro. Atlas.

Bai, J., & Perron, P. (1998). Estimating and Testing Linear Models with Multiple Structural Changes. Econometrica: Journal of the Econometric Society, 66(1), 47-78.

Bai, J., & Perron, P. (2003). Computation and analysis of multiple structural change models. Journal of Applied Econometrics, 18(1), 1-22.

Banco Central do Brasil. (2020). Atas do Comitê de Política Monetária – Copom.

Banco Central do Brasil. (n.d.). Taxa Selic.

Brown, R. L., Durbin, J., & Evans, J. M. (1975). Techniques for testing the constancy of regression relationships over time. Journal of the Royal Statistical Society: Series B (Methodological), 37(2), 149-163.

Carrion-i-Silvestre, J. L.; Kim, D., & Perron, P. (2009). GLS-based unit root tests with multiple structural breaks both under the null and the alternative hypotheses. Econometric Theory, 25(6), 1754-1792.

Carvalho, J., & Divino, J. A. C. (2008). Paridade descoberta da taxa de juros em países latino-americanos. In Anais do XXXVI Encontro Nacional de Economia. Salvador, BA.

Chow, G. C. (1960). Tests of equality between sets of coefficients in two linear regressions. Econometrica: Journal of the Econometric Society, 28(3), 591-605.

Clemente, J., Montañés, A., & Reyes, M. (1998). Testing for a unit root in variables with a double change in the mean. Economics letters, 59(2), 175-182.

Das, P. (2019). Econometrics in Theory and Practice: Analysis of Cross Section, Time Series and Panel Data with Stata 15.1. Springer Nature.

Dickey, D. A., & Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74(366a), 427-431.

Greene, W. H. (2002). Econometric Analysis. Pearson Prentice Hall.

Gujarati, D. N., & Porter, D. C. (2011). Econometria básica. Amgh Editora.

Gutierrez, C. E. C., & Almeida, F. M. de M. (2013). Modelagem e previsão do preço do café brasileiro. Revista de Economia, 39(2).

Hansen, B. E. (2001). The new econometrics of structural change: dating breaks in U.S. labor productivity. The Journal of Economic Perspectives, 15(4), 117-128.

IBGE. (2021). Todas as pesquisas e estudos.

Inperes, L. H., & Borges, M. J. (2022). A COVID-19 e a conjuntura econômica brasileira: uma análise de quebra estrutural: a COVID-19 e a conjuntura econômica brasileira: uma análise de quebra estrutural. DIVERSITÀ: Revista Multidisciplinar do Centro Universitário Cidade Verde, 8(1).

Kejriwal, M., & Perron, P. (2010). A sequential procedure to determine the number of breaks in trend with an integrated or stationary noise component. Journal of Time Series Analysis, 31(5), 305-328.

Lee, J., & Strazicich, M. C. (2001). Break point estimation and spurious rejections with endogenous unit root tests. Oxford Bulletin of Economics and statistics, 63(5), 535-558.

Makin, A. J. (2019). Lessons for macroeconomic policy from the Global Financial Crisis. Economic Analysis and Policy, 64, 13-25.

Malacrida, M. J. C., & Yamamoto, M. M. (2006). Governança corporativa: nível de evidenciação das informações e sua relação com a volatilidade das ações do Ibovespa. Revista Contabilidade & Finanças, 17, 65-79.

Morettin, P. A. (2011). Econometria financeira: um curso em séries temporais financeiras. São Paulo: Edgard Blücher.

Nelson, C. R., & Plosser, C. R. (1982). Trends and random walks in macroeconmic time series: some evidence and implications. Journal of monetary economics, 10(2), 139-162.

Nunes, M. S. (2003). A relação entre o mercado de ações brasileiro e as variáveis macroeconômicas no período pós-plano real (Dissertação de Mestrado). Universidade Federal de Santa Catarina.

Oliveira, L. O. G. D. (2006). Análise empírica da relação entre mercado acionário e variáveis macroeconômicas: de 1972 a 2003. (Dissertação de Mestrado). Universidade Federal de Santa Catarina.

Organização Mundial da Saúde. (2020). Timeline: WHO’s COVID – 19 response.!

Perron, P. (1988). Trends and random walks in macroeconomic time series: further evidence from a new approach. Journal of economic dynamics and control, 12(2-3), 297-332.

Perron, P. (1997). Further evidence on breaking trend functions in macroeconomic variables. Journal of Econometrics, 80(2), 355-385.

Perron, P., & Vogelsang, T. J. (1992). Nonstationarity and level shifts with an application to purchasing power parity. Journal of Business & Economic Statistics, 10(3), 301-320.

Perron, P., & Yabu, T. (2009). Testing for shifts in trend with an integrated or stationary noise component. Journal of Business & Economic Statistics, 27(3), 369-396.

Pinho, C. E. S. (2020). The responses of the authoritarian national developmentalism to the structural economic crisis (1973-1985). Brazilian Journal of Political Economy, 40, 411-431.

Quandt, R. E. (1960). Tests of the hypothesis that a linear regression system obeys two separate regimes. Journal of the American Statistical Association, 55(290), 324-330.

Shikida, C., Paiva, G. L., & Araújo, A. F., Jr. (2016). Análise de quebras estruturais na série do preço do boi gordo no Estado de São Paulo. Economia Aplicada, 20(2), 265.

Silva, A. C. A. da, Carvalho, P. S. de A., & Aragón, E. K. D. S. B. (2015). Quebras estruturais e estacionariedade da razão consumo-renda: novas evidências para América Latina e Estados Unidos. Análise Econômica, 33(64).

Uribe, J. M., & Restrepo López, N. (2015). Dinámica del tipo de cambio, quiebre estructural e intervenciones de política en Colombia. Ecos de Economía, 19(41), 24-44.

Zivot, E., & Andrews, D. W. K. (1992). Further evidence on the great crash, the oil price shock, and the unit root hypothesis. Journal of Business and Economic Statistics, 10(3), 251-270.




How to Cite

Pereira, D. D. M., & Arevalo, J. L. S. (2024). ANALYSIS OF STRUCTURAL BREAKS IN THE BRAZILIAN BASE INTEREST RATE AND THE STOCK MARKET UNDER THE ADVENT OF COVID-19. International Journal of Professional Business Review, 9(4), e04627.